Journal of SCience Vol.10 August 2020 48

WASec, a Web Security Scanner for Web Applications

Diaddeen Sidoon!, Anwar Alhenshiri? and Inass Husien?
Internet Systems Department, Faculty of Information Technology, Misurata University
ZInformation Systems Department, Faculty of Information Technology, Misurata University
3Documentation and Information Center, Faculty of Information Technology, Misurata University
diaddeenss, alhenshiri, e.ismail @ it.misuratau.edu.l

Submission daa: 1262020, Acceptance data:11.7.2020, Date of electronic publisﬁing 1.8.2020
https:/lwww.misuratau.edu.ly/journal/scilupload/file/R-12 64-ISSUE-10%20PAGES%2048-56.paf

Abstract:Web application security scanners are automated testing and scanning pro-
grams that examine web applications for potential security vulnerabilities. WASec
(Web Application Security) was created as a security scanner that uses black-box
testing to scan web applications for error-based and time-based SQL injection along
with Reflected Cross-site Scripting vulnerabilities and report them. WAsec was test-
ed against web applications of known vulnerabilities. The testing process, although
preliminary, has showed promising results. The design and implementation of this
tool was intended to tackle the current security problems in Libyan websites.

Keywords: Web, security, vulnerability, testing, tool, software, application, script-

ing, website.

Introduction

Web application security is as im-
portant as the security of banks and
governmental offices. it is concerned
with the security of web applications,
websites, and web services [3]. Web
applications of different kinds have
been a target of direct attacks by
hackers who seek either the end users'
information or the corporate behind
the website [1].

Security in web applications is ap-
proached in many different ways,
when designing, building, testing and
even after finishing the construction
of the application. Web Application
Firewalls (WAFs). For example, is
one of the most popular security solu-
tions that are implemented in web
applications. Their main job is to pre-
vent attackers from exploiting the
system's vulnerabilities, by monitor-
ing, filtering and blocking HTTP traf-
fic (i.e. traffic through the HTTP port,
port 80) [6].

Another mechanism of security is
Intrusion Prevention Systems

(IPS)/Intrusion Detection = Systems
(IDS). This form of security works on
intrusion detection and stopping any
detected incidents of this kind. IPS
and IDS systems constantly watch the
network, identify possible incidents,
stop the incidents, log information
about them, and report them to securi-
ty administrators [4].

One of the interesting methods of
security is Black-box Testing. It is a
technique to test web applications
based on their external visible behav-
ior and functionality.[5] The tester
does not have access to the applica-
tion's source code and only works by
observing the application's output in
response to a specific input. Some
tools that use black-box testing in-
clude web application security scan-
ners, vulnerabilities scanners, and
penetration testing software [2].

On the other hand, White-box Testing
tests the web application's internal
structure using statistical code analy-
sis tools. The tester must have access
to the web application's source code,

49 Web Security Scanner for Web Applications

and must have experience in the pro-
gramming languages used in the ap-
plication being tested. Static source
code analyzer is one of the tools that
use white-box testing [2].

In addition to the aforementioned
techniques, there are other security
testing approaches such as Gray-box
Testing. This technique falls between
the white-box and black-box testing
techniques. The tester knows some
parts of the source code used for
building the application. Moreover,
Fuzzing is a technique used for input
testing. It involves invalid, unex-
pected, and random data inputs to a
web application [2]. Finally, Pass-
word Cracking is used to test pass-
word strength. Brute-Force is a com-
monly used technique that tries to
guess repeatedly for passwords and
check them against any available
cryptographic hash of the password
[5].

According to the Open Web Applica-
tion Security Project (OWASP), the
most critical web applications vulner-
abilities are Cross-Site Scripting
(XSS) and Sql Injections [4]. Most
Web applications are susceptible to
some kind of vulnerability. Last year's
research shows that over 80% of Web
applications were vulnerable to Cross
Site Scripting (XSS) and over 25%
were vulnerable to SQL injection
flaws [7].

Cross Site Scripting and Injection
Flaws are the two most spread vul-
nerabilities as indicated earlier. These
are also the most easily detected by
scanners. Therefore, most of the
available scanners search for them,
more or less successfully. However,
most of vulnerability scanners look
only for particular subsets of these
vulnerabilities. SQL injection is a
typical injection flaw that is most
often sought. Reflected XSS is the
easiest XSS type to detect [8].

The research in this paper focuses on
those two vulnerabilities to allow web
developers in Libya to benefit from
the designed system. The current sta-
tus of web design lacks security
measures and makes web applications
very vulnerable.

Related Work
Several studies proposed new algo-
rithms and approaches of detecting
vulnerabilities and testing web appli-
cations. The researches discussed in
this section explores SQL Injection
and Cross-site Scripting vulnerabili-
ties.
Suhina et al. (2008) suggested cluster-
ing web pages for vulnerabilities de-
tection. They analyzed the structure
of response pages, i.e. HTML ele-
ments, to find differences between a
single page or form requested and
collections of input sets that are con-
structed for use in testing. They dis-
cussed how clustering security audit
tools should be built and what prob-
lems could be encountered when
building and using those tools.
Boyer-Moore (BM) string matching
algorithm was proposed in the work
of Saleh et al. (2015) to detect web
application vulnerabilities. The BM
algorithm compares the pattern char-
acters with the text characters from
right to left. Although the results of
this research proved that the method
caused low false negatives and false
positives for all detections with low
processing time, it could only detect
individual webpages but not the entire
web application.

SWAT - the Secure Web Application
Tactics, a tool introduced by (Jain and
Sethi, 1991), detected an average of 60
faults and 424 warnings over the six
web applications discussed in the
study. SWAT wuses Search Based
Software Engineering algorithms to

Journal of SCience

Vol.10 August 2020 50

implement automated web applica-
tions testing.

WAPITI is a free command line open
source web application security scan-
ning tool. It is built with Python and it
scans for a number of vulnerabilities
such as time-based and error-based
SQL injection and XSS. It was stud-
ied in the work of Alsaleh et al.
(2017) in comparison to a number of
other web application scanners, such
as Arachni. The results of the study
showed that WAPITI recorded a
42.86% observation of XSS false
alarm rate whereas no false positives
were recorded for arachni.

Other Scanners, such as W3AF and
OWASP Zed Attack Proxy (ZAP),
were also studied alongside some
other web application security scan-
ners in the work of Ferreira and
Kleppe (2014) against a vulnerable
web application they created. The
results showed that the scanners could
only detect stored XSSs and Cross-
site Request Forgery (CSRF). How-
ever, Reflected XSS and SQL Injec-
tions were not detected.

Abbas and Elgabar (2014) compared
several security scanners and focused
on injection, cross-site scripting, bro-
ken authentication, and session man-
agement vulnerabilities. They elimi-
nated the platforms that did not sup-
port those risks. Eventually, W3AF,
arachni, and Skipfish showed the best
results among all scanners.

WASec will be tested against a group
of web applications with known vul-
nerabilities from the Open Web Ap-
plication Security Project (OWASP)
to assess its performance efficiency in
crawling, and scanning for both SQL
Injection and Cross-site Scripting
vulnerabilities. In addition, WASec
will be tested against a number of
Libyan websites that are powered by
PHP and run on MySQL databases to

evaluate the security of these web
applications.

Methodology
For the purpose of this research a sys-
tem called WASec was developed.
This system consisted of four parts as
shown in Figure 1.

Crawl
Get Information 1 Website
from the User / Generate a

Y ,/‘/ Ren
lognto /|
Hebsite Scanfor Seanforxss
Necessary Partll SQLi
Optional Part

Figure 1 Process Flow Diagram for
WASec System

1. Getting User Information

The user interface is designed to al-
low the user to enter the URL of the
website to be tested. The root URL is
entered and the system forwards that
URL to the embedded crawler.
WASec crawls only those pages that
belong to the root of the given URL.

NAS8es

Web Application Security Scanner
Misurata University

Base URL =
Login URL |e-m. hees

RODOtS.IXTURL [= 1o

Scan Options O Ciawl only ©0 SQL Injection scan () XSS scan (3 Full

Pages to Crawl [0 23

WASec Is an apen-source saftware devaloped under

Figure 2 User Interface

2. Crawling

The crawling process takes the root
URL and fetches the content of each
URL found starting from the root
URL. Two lists are kept, one for links
that can be crawled which belong to
that given website while the other one
is for links that should not be crawled.

51 Web Security Scanner for Web Applications

Links to other websites as well as
those with robot.txt exceptions are not
crawled. To enforce politeness, a cer-
tain delay period between each two
consecutive crawls to the same server
is applied.

Figure 3 Crawling Results

3. Scanning for Attacks

The process of scanning starts by
parsing the links crawled in the previ-
ous stage. The parsing finds forms in
the page to perform vulnerability test-
ing. The testing happens by submit-
ting both harmful content and other
data. The results of form submission
is tested by comparing it to a list of
SQL injections and a list of XSS pay-
loads. The server response is then
analysed to see whether or not the
target page is prone to attacks. All
kinds of attacks kept in the lists ac-

Taro:

Sec

Figure 4 Scanning for Attacks

4. Report Generation

A report is generated for each URL
tested. The report shows the link and
the kind of wvulnerability associated
with that link. The repost is shown in
Figure 5. The number of pages
crawled in addition to the percentage

companying WASec are tested.
R L e

of vulnerable pages are shown in the
report.

Figure 5 Final Report and Results of
Tests
Evaluation

The black box evaluation method was
adopted in this project. It is a widely
used method of software testing that
can be applied virtually to any type of
software and to any level of testing
(e.g. unit, system, etc.). Moreover,
black box testing is widely used in
web applications scanning tools.

This testing technique is not based
directly on the web application’s
source code architecture. It is only
concerned with the input and the out-
put of the web application as it focus-
es on the external visible behavior of
the tested application, not the code
that causes it (the external behavior).
The tester does not have access to the
web application’s source code or its
details. The web application is a
“black box” to the tester who cannot
see inside the box (i.e. the code). The
tester only knows that they can input
some data to the application, and that
the black box will send something in
response.

To evaluate the effectiveness of
WASec, a simple experiment was
conducted. A sample of websites with
known vulnerabilities was selected to
test our software against real web
applications. Testing included pages
that are prone to SQL Injections and
XSS. The dataset of pages used in the
evaluation was taken from OWASP
Vulnerable Web Applications Direc-

Journal of SCience

Vol.10 August 2020 52

tory Project. Table 1 shows the appli-
cations involved in the experiment. In
addition, a sample of Libyan websites
was selected to test both the software

developed and its effectiveness in the
case of local websites. Table 2 shows
the Libyan websites involved in the
Experiment.

Table 1 Vulnerable Web Applications Involved in the Experiment

. Require
Application Name Author Technology Lo
Damn Vulnerable Web
Application (DVWA)[23] RandomStorm PHP Yes
Mutillidae 11[24] OWASP PHP No
BTS Lab[25] Cyber Security & PHP No
Privacy Foundation
SQLi-Labs[26] PHP No
Buggy Web App
(bWAPP)[27] PHP Yes
Table 2 Libyan Websites Involved in the Experiment
Website Name Website URL Technology Requ'lre
Login
Libyan Telecom and
Technology (LTT) www.ltt.ly PHP No
Libyana www.libyana.ly PHP No
Libya Services www.services.ly PHP No
Libyan Libraries www.services.ly/libraries PHP No
The testing process was performed in Crawling

three phases. First, during crawling the
website to test the crawler abilities.
Then, automated vulnerability testing of
pages that are specifically vulnerable to
SQL Injection and Cross-site Scripting.
Finally, a manual vulnerability testing
was conducted using the payloads that
reported successful exploits to check if
they were truly effective and record the
number of correct exploits, false posi-
tives and false negatives.

First, the applications listed in Table
3.4 were crawled. In the results, the
total links found refer to the total
number of links WASec found in
each application. The crawled links is
the valid and never-crawled links
count. Invalid links is the number of
links in WASec’s black list. The time
taken refers to the time WASec took
to crawl each web application. Table
3 shows vulnerable web applications
crawling results. Table 4 shows liby-
an websites crawling results

Journal of SCience

Vol.10 August 2020 53

Table 3 Vulnerable Web Applications Crawling Results

Total Links | Crawled | Invalid .
App Name Found Links Links L
Damn Vulnerable Web .
Application (DVWA) 7 23 40 4 min.
Mutillidae 1T 641 183 458 2 hr.
BTS Lab 144 31 113 27.55 min.
SQLi-Labs 90 74 16 45.38 min.
Buggy Web App .
(bWAPP) 48 5 43 2.53 min.
Table 4 Libyan Websites Crawling Results
Website Name Total Links Crawled Invalid | Time Tak-
Found Links Links en
Libyan Telecom and .
Technology (LTT) 253 29 224 56.27 min.
Libyana 299 151 148 6 hr.
Libya Services 307 8 299 3.4 min.
Libyan Libraries 121 14 107 21.5 min.
Vulnerability Testing review the automated testing WASec

As shown in Table 3, tested pages
refers to the number of links that were
found suitable for testing. Exploited
pages is the number of pages WASec
found vulnerable. False negatives is
the number of pages that contained a
vulnerability but were not reported
vulnerable while false positives is the
number of pages that did not contain
any vulnerability but WASec had
reported vulnerable. False negatives
and positives are tested manually to

had performed. Time taken is the time
taken to perform the vulnerability
tests. Table 5 shows Vulnerable web
applications for SQL Injection Re-
sults. Table 6 shows Libyan websites
SQL injection results. Table 7 lists
vulnerable web applications XSS Re-
sults. Table 8 shows Libyan websites
XSS Rrsults

Table 5 Vulnerable Web Applications SQL Injection Results
Ay N Pages Page.s Fe}lge Fals.e Time
Tested | Exploited | Positives | Negatives Taken

Damn Vulnerable
Web Application 2 0 0 2 19.7 min.
(DVWA)
OWASP Mytilidae 11 5 3 2 2 2:02 hr.
BTS Lab 4 4 1 0 1.18 min.
SQLi-Labs 13 13 0 0 3 hr.
Buggy Web App
(bWAPP) 5 3 0 2 2 hr.

Journal of Science Vol.10 August 2020 54
Table 6 Libyan Websites SQL Injection Results
) Pages Pages False False Time
Website Name) . _
Tested | Exploited | Positives | Negatives | Taken
Libyan Telecom and
5 2 0 0 4:37 hr.
Technology (LTT)
Libyana 2 0 0 0 7:13 hr.
Libya Services 8 4 0 0 5:28 hr.
Libyan Libraries 14 3 0 0 9:24 hr.
Table 7 Vulnerable Web Applications XSS Results
Ao Name Pages Pages False False Time
PP Tested | Exploited | Positives | Negatives Taken
Damn Vulnerable Web
Application (DVWA) 2 0 0 2 2 hr.
OWASP Mutillidae Il 5 4 0 1 3.24 min.
BTS Lab 8 7 0 1 36 sec.
Buggy Web App
(bWAPP) 12 9 0 3 1 hr.
Table 8 Libyan Websites XSS Results
) Pages Pages False False Time
Website Name) . .
Tested | Exploited | Positives | Negatives | Taken
Libyan Telecom and
5 0 0 0 4:21 hr.
Technology (LTT)
Libyana 2 0 0 0 2 hr.
Libya Services 8 0 0 0 8:36 hr.
Libyan Libraries 14 0 0 0 16 hr.
RESULTS AND DISCUSSION

The vulnerability testing was performed to evaluate the effectiveness of WASec’s
vulnerability exploiters. Figure 6 summarizes the results (from Table 5) concerning
SQL Injection vulnerabilities while Figure 7 has the results (from Table 7) regarding

the XSS vulnerabilities.

55 Web Security Scanner for Web Applications

SQLI SCANNING EFFICIENCY

mTrue Exploites M False Positives M False Negatives

Figure 6

In the case of the Libyan websites
shown in Table 8, no tested website
proved to be vulnerable to cross-site
scripting. When tested manually for
vulnerabilities, the attacks were either
stopped by the website’s firewall or
had no effect. Hence, it was conclud-
ed that no website showed any signs
of vulnerability to XSS attacks.

It is notable though, as it appears in
Table 7, that most of the tested web-
sites were proven vulnerable to SQL
Injection. The most vulnerable web-
site. was Libya Services being 50%
vulnerable to SQLi followed by Liby-
an Libraries with 21%. The third
place was taken by LTT with 6.9%.
Finally, Libyana was shown to be
nonvulnerable at all. However, Liby-
ana did not have any connection to
databases and operated with PHP
alone. Hence, it could not have been
vulnerable to SQL Injection.

Conclusion

The paper presented WASec, an open
source tool developed for testing web
application security vulnerabilities.
The tool was designed—at the current
stage—to measure vulnerabilities
regarding SQL Injections and XSS.
Further development may consider
other kinds of threats. The experiment
conducted to evaluate WASec pro-
vide good indications of the effec-

XSS SCANNING EFFICIENCY

mTrueExploites WFalse Positives M False Negatives

Figure 7

tiveness of the tool. Further investiga-
tions are needed using larger datasets
and more types of vulnerability test-
ing.

REFERENCES

[1] Abena, A; Miguel, L; Mouanga, A;
Ouamba, J; Sainard, D; Thiebolt, M;
Hodi-assah, T; and Diatewa, M. (2004)
Neuropsychopharmacologi- Cal effects of
leaves qnd seeds extracts of Datura fastu-
osa. Biotech-Nologym, 3(2):109-113

[2] Jerry Gao; H.-S. J. Tsao; Ye Wu
(2003). Testing and Quality Assurance for
Component-based Software. Artech
House. pp. 170—-. ISBN 978-1-58053-
735-3 .

[3] Akerele, O. (1984) WHO's traditional
medicine program: progress and perspec-
tive. WHO Chron., 38(2):76-81.

[4] Akinboro, A; and Bakare, A. (2007)
Cytotoxic and genotoxic effects of aque-
ous extracts of five medicinal plants on
Allium cepa Linn. J. Ethnopharmacol.,
112(3):470-5

[5] Berger, F; Gage, F; and Vijayara-
ghavan, S. (1998) Nicotinc receptor- in-
duced apoptotic cell death of hippocampal
progenitor cells. J. of neuroscience,
18(7):6871-6881

[6] Shuaibu, Bala Musa; Norwawi, Norita
Md; Selamat, Mohd Hasan; Al-Alwani,
Abdulkareem (2013-01-17). “Systematic
review of web application security devel-
opment model”.Artificial Intelligence
Review. 43 (2): 259-276.
doi:10.1007/s10462-012-9375-6. ISSN
0269-2821.

Journal of SCience Vol.10 August 2020 56

[7] Korolov, Maria (Apr 27, 2017). “ Lat-
est OWASP Top 10: The Ten Most Criti-
cal Web Application Security Risks”.

[8] “Testing and Comparing Web Vulner-
ability Scanning Tools for SQL Injection

and XSS Attacks”. Fonseca, J.; Vieira,
M.; Madeira, H., Dependable Computing,
IEEE. Dec 2007.
doi:10.1109/PRDC.2007.55

